
oneM2M Technical Specification
Document Number oneM2M-TS-0019-V-2.9.2
Document Name: Abstract Test Suite and Implementation eXtra

Information for Test
Date: 2025 February 13
Abstract: Abstract Test Suite and Implementation eXtra

Information for Test consists of:
• Definition of the Abstract Protocol Tester

(APT)
• Definition of TTCN-3 test architecture
• Development of TTCN-3 test suite, e.g.

naming conventions, code documentation,
test case structure.

• IXIT proforma;
Template Version:23 February 2015 (Do not modify)

This Specification is provided for future development work within oneM2M only.
The Partners accept no liability for any use of this Specification.

The present document has not been subject to any approval process by the
oneM2M Partners Type 1. Published oneM2M specifications and reports for
implementation should be obtained via the oneM2M Partners’ Publications
Offices.

1

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which
address the need for a common M2M Service Layer that can be readily embedded
within various hardware and software, and relied upon to connect the myriad of
devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

(c) 2025, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI,
TTA, TTC).

All rights reserved.

The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals
who have the appropriate degree of experience to understand and interpret its
contents in accordance with generally accepted engineering or other professional
standards and applicable regulations. No recommendation as to products or
vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMA-
TION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS
TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND
FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO
oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT
OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS
DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT
SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES
ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PRO-
VIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents
1 Scope
2 References

2.1 Normative references
2.2 Informative references

3 Definition of terms, symbols and abbreviations
3.1 Terms

2

3.2 Symbols
3.2 Abbreviations

4 Conventions
5 Abstract Test Method (ATM)

5.1 Abstract protocol tester (APT)
5.2 Test Configuration

5.2.1 AE Test Configuration
5.3 Test architecture
5.4 Ports and ASPs (Abstract Services Primitives)

5.4.0 Introduction
5.4.1 mcaPort, mcaPortIn, mccPort, mccPortIn
5.4.2 utPort

5.4.2.0 Introduction
5.4.2.1 Usage for Automated AE Testing
5.4.2.2 Upper Tester Control Primitives

5.4.2.2.1 Introduction
5.4.2.2.2 UtTrigger and UtTriggerAck Primitives
5.4.2.2.3 Control Communication Protocol
5.4.2.2.4 Control Message Serialization

5.4.3 acPort
5.4.4 infoPort

5.5 Test components
5.5.1 Tester
5.5.2 AeSimu
5.5.3 CseSimu

5.6 Test strategy
6 Untestable Test Purposes
7 ATS Conventions

7.0 Introduction
7.1 Testing conventions

7.1.1 Testing states
7.1.1.1 Initial state
7.1.1.2 Final state

7.2 Naming conventions
7.2.1 General guidelines
7.2.2 oneM2M specific TTCN-3 naming conventions
7.2.3 Usage of Log statements
7.2.4 Test Case (TC) identifier

7.3 IXIT
8 TTCN-3 Verifications
Annex A (normative): TTCN-3 library modules

A.1 Electronic annex, zip file with TTCN-3 code
Annex B (informative): Bibliography
History

3

1 Scope
The present document contains the Abstract Test Suite (ATS) for oneM2M as
defined in oneM2M TS-0001 [1] and oneM2M TS-0004 [2] in compliance with
the relevant requirements and in accordance with the relevant guidance given in
ISO/IEC 96467 [i.6].

The objective of the present document is to provide a basis for conformance
tests for oneM2M products giving a high probability of interoperability between
different manufacturers’ equipment.

The ISO standard for the methodology of conformance testing (ISO/IEC 9646-1
[i.4] and ISO/IEC 9646-2 [i.5]) as well as oneM2M TS-0015 [i.2] are used as a
basis for the test methodology.

2 References
2.1 Normative references
References are either specific (identified by date of publication and/or edition
number or version number) or nonspecific. For specific references, only the cited
version applies. For non-specific references, the latest version of the referenced
document (including any amendments) applies.

The following referenced documents are necessary for the application of the
present document.

• [1] oneM2M TS-0001: “Functional Architecture”.
• [2] oneM2M TS-0004: “Service Layer Core Protocol”.
• [3] ETSI ES 201 873-1 (V4.5.1): “Methods for Testing and Specification

(MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3
Core Language”.

• [4] oneM2M TS-0018: “Test Suite Structure and Test Purposes”.

2.2 Informative references
References are either specific (identified by date of publication and/or edition
number or version number) or nonspecific. For specific references, only the cited
version applies. For non-specific references, the latest version of the referenced
document (including any amendments) applies.

The following referenced documents are not necessary for the application of the
present document but they assist the user with regard to a particular subject
area.

• [i.1] oneM2M Drafting Rules. > NOTE: Available at http://www.onem2m
.org/images/files/oneM2M-Drafting-Rules.pdf.

• [i.2] oneM2M TS-0015: “Testing Framework”.

4

http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf
http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf

• [i.3] oneM2M TS-0025: “Product profiles”.

• [i.4] ISO/IEC 9646-1 (1994): “Information technology - Open Systems
Interconnection - Conformance testing methodology and framework - Part
1: General concepts”.

• [i.5] ISO/IEC 9646-2 (1994): “Information technology - Open Systems
Interconnection - Conformance testing methodology and framework - Part
2: Abstract Test Suite specification”.

• [i.6] ISO/IEC 9646-7 (1995): “Information technology - Open Systems
Interconnection - Conformance testing methodology and framework - Part
7: Implementation Conformance Statements”.

3 Definition of terms, symbols and abbreviations
3.1 Terms
For the purposes of the present document, the terms given in ISO/IEC 9646-1
[i.4], ISO/IEC 9646-7 [i.6] and oneM2M TS-0015 [i.2] apply.

3.2 Symbols
Void.

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AE Application Entity
APT Abstract Protocol Tester
ASP Abstract Service Primitives
ATM Abstract Test Method
ATS Abstract Test Suite
CoAP Constrained Application Protocol
CSE Common Service Entity
HTTP Hypertext Transfer Protocol
IP Internet Protocol
IUT Implementation Under Test
IXIT Implementation eXtra Information for Test
JSON JavaScript Object Notation
M2M Machine to machine
MN Middle Node
MQTT Message Queuing Telemetry Transport
MTC Main Test Component
PA Platform Adaptor
PICS Protocol Implementation Conformance Statement
PTC Paralell Test Component

5

SA System Adaptor
SUT System Under Test
TC Test Case
TCP Transmission Control Protocol
TP Test Purposes
TS Test System
TSS Test Suite Structure
TTCN Tree and Tabular Combined Notation
UDP User Datagram Protocol
UT Upper Tester
XML eXtensible Markup Language

4 Conventions
The key words “Shall”, “Shall not”, “May”, “Need not”, “Should”, “Should not”
in this document are to be interpreted as described in the oneM2M Drafting
Rules [i.1].

5 Abstract Test Method (ATM)
5.1 Abstract protocol tester (APT)
An abstract protocol tester (APT) is a process that provides behaviours for
testing an IUT by emulating a peer IUT at the same layer, and enabling to
address a single test objective.

APTs used by the oneM2M test suite are described in figure 5.1-1. The test
system will simulate valid and invalid protocol behaviour, and will analyse the
reaction of the IUT.

As figure 5.1-1 illustrates, the corresponding ATS needs to use lower layers to
establish a proper connection to the system under test (SUT) over a physical link
(Lower layers link). Four different lower layers have been specified corresponding
to the binding protocols considered in oneM2M: HTTP, CoAP, WebSocket and
MQTT.

5.2 Test Configuration
5.2.1 AE Test Configuration

Test configurations are defined to test different entities such as CSE and AE,
etc.

Figure 5.2.1-1 shows a AE test configuration which is mapped to CF03 in
clause 6.3.3.3 in oneM2M TS0015 [i.2] and aligns with conformance test system
architecture in clause 6.3.3.2 in oneM2M TS-0015 [i.2].

6

Figure 1: Figure 5.1-1: Abstract protocol testers - oneM2M

The TTCN-3 Test Component in Test System sends triggering actions or be-
haviour to the Upper Tester Application of SUT through upper tester transport
link Ut while the IUT sends/receives oneM2M service primitives through Mca
to/from CSE in Test System.

5.3 Test architecture
The approach for the implementation of an Abstract Protocol Tester selected
in oneM2M follows the recommendation of the oneM2M Testing Framework
oneM2M TS-0015 [i.2] where the TTCN-3 language and its architecture are
recommended.

Following this recommendation the oneM2M tester architecture comprises a
non-platform dependent Test Suite, and a platform dependent part.

NOTE: However, it can be implemented in a semi-independent man-
ner, which will minimize the dependency to those elements.

• oneM2M TTCN -3 Abstract Test Suite: the test suite is platform
independent, and it is the cornerstone of the architecture. It allows a
complete decoupling between the test suite and the rest of the test system.
The test suite is composed of a complete set of test cases covering oneM2M
requirements specified by oneM2M TS0001 [1] and oneM2M TS-0004 [2].

• oneM2M System Adaptor : this is the platform dependent part that
includes adaptors and codecs (out of the scope of the present document).
This part of the architecture definition depends on the specific platform

7

Figure 2: Figure 5.2.1-1: AE test configuration

Figure 3: Figure 5.3-1: High level oneM2M Test Architecture

8

(e.g. Windows® or Linux®) and test tool on which the tester is going to
run.

Figure 5.3-2 shows the oneM2M TTCN-3 test architecture design used for the
oneM2M ATS. The Test Suite needs to interact with the System Adaptor to
implement the collection of TTCN-3 test cases that are intended to be used to
test the oneM2M IUTs.

The oneM2M TTCN-3 test cases implement the test algorithms specified in the
TSS&TP document oneM2M TS0018 [4], including verdict logic that allows
pass/fail diagnosis.

The test algorithms use the interfaces defined in [1] and [2] (mca, mcc) in order
to:

1. control the test event to be sent towards the IUT; and
2. observe the test events received from the IUT.

In TTCN-3 these two interfaces have been implemented through a set of logical
TTCN-3 ports (mcaPort and mcaPortIn for mca interface, and mccPort and
mccPortIn for mcc interface) which allows oneM2M message primitives exchange
with the IUT.

Figure 4: Figure 5.3-2: oneM2M Test Architecture

The oneM2M primitive messages have been mapped into TTCN-3 structure.

9

Through this mapping, the TTCN-3 is able to build and send these messages, as
well as receive them via the ports defined above.

Additionally, the test cases are able to control and configure the test platform
through a dedicated port called acPort while port utPort enables oneM2M
TTCN-3 Test Component module to trigger specific action or behaviour on IUT.
TTCN3 Test Components can also exchange information through a dedicated
port called infoPort.

To build up a tester, the test platform needs to be also developed (out of scope).
This test platform is composed of three adaptation layers:

• PA (Platform Adaptor) layer functionality implements the communication
between the TTCN-3 modules and external elements that constitute the
test tool such as timers and external functions. The External functions
are a powerful resources supported by TTCN-3 language. An External
function is a function declared at the TTCN-3 level but implemented at
the native level.

• SA (System Adaptor) layer functionality is divided into two modules:

– oneM2M lower layers stack module implements the communication
with the IUT and carries out the oneM2M primitives messages sent
to or received from the IUT. This module is based on TCP or UDP
depending on the binding supported by the IUT. The binding is a
system adaptor parameter.

– Upper Tester Transport module implements functions that enable
triggering specific actions or behaviour on the IUT.

• CODECS layer is the part of the tester to encode and decode messages
between the TTCN-3 abstract internal data representation and the format
required by the related base standard which the IUT understands. Several
CODECS are required in oneM2M tester to cope with the bindings consid-
ered in oneM2M (HTTP, CoAP, MQTT) and the serialization methods
(xml, json).

5.4 Ports and ASPs (Abstract Services Primitives)
5.4.0 Introduction

The oneM2M ATS implements the following ports:

• The mcaPort and mcaPortIn
• The mccPort and mccPortIn
• The acPort
• The utPort
• The InfoPort

10

5.4.1 mcaPort, mcaPortIn, mccPort, mccPortIn

These ports are used to send and receive the following message sets:

• Request Primitives messages in accordance with oneM2M TS-0004 [2].
• Response Primitives messages in accordance with oneM2M TS-0004 [2].

Two primitives are currently defined for these ports indicated as table 5.4.1-1:

1. The M2MRequestPrimitive - to send or receive oneM2M messages to/from
the IUT. Depending on the IUT to be tested:

• If the IUT is an AE, these messages are either received or sent by the
tester which is associated with the CSE role through the mcaPortIn
or the mcaPort respectively.

• If the IUT is a CSE, these messages are either sent or received by
the tester when it plays the AE role through the mcaPort or the
mcaPortIn respectively, or sent or received by the tester when it plays
the CSE role through the mccPort or the mccPortIn respectively.

2. The M2MResponsePrimitive - to send or receive oneM2M messages to/from
the IUT. Depending on the IUT to be tested:

• If the IUT is an AE, these messages are either sent or received by the
tester which is associated with the CSE role through the mcaPortIn
or the mcaPort respectively.

• If the IUT is a CSE, these messages are either sent or received by
the tester when it plays the CSE role through the mccPortIn or the
mccPort respectively, sent or received by the tester when it plays the
AE role through the mcaPortIn or mcaPort respectively.

Both primitives contain another parameters that permits to dynamically configure
the test adaptor for every single sending. These parameters are:

• Host: IP address of the IUT
• XML Namespace
• Protocol binding
• Serialization
• ForceFields: used to force invalid or empty values to certain attributes.

This behaviour shall be implemented by the System Adaptor.

Table 2: Table 5.4.1-1: Mapping of TTCN-3 Primitives to oneM2M
Service Primitives

TTCN-3 Primitive oneM2M Message Direction IUT

M2MRequestPrimitive Request Primitive ←→ AE
←→ CSE

M2MResponsePrimitive Respomse Primitive ←→ AE
←→ CSE

11

5.4.2 utPort

5.4.2.0 Introduction The utPort is included in the oneM2M ATS in order
to be able to stimulate the IUT and receive extra information from IUT upper
layers. For instance, the utPort can be applied to automate AE testing shown
as clause 5.4.2.1.

5.4.2.1 Usage for Automated AE Testing The utPort is in charge of the
communication between TTCN-3 Test Component module in Test System and
the Upper Tester Application in SUT.

Functionalities that TTCN-3 Test Component module and the Upper Tester
Application are required to implement are listed as follows:

• TTCN-3 Test Component is able to configure the Test System and send
standardized triggering commands to the SUT (Upper Tester Application).

• Upper Tester Application can process the triggering command messages
received from Test System (TTCN-3 Test Component) and stimulates
IUT to act following the corresponding triggering command (i.e. sending
oneM2M service primitives to Test System through Mca port).

oneM2M service Primitive defined for utPort is listed as follows:

• The UtTrigger primitive is used to trigger upper layer events in IUT
(i.e. sending oneM2M service primitives to Test System through Mca port).

• The UtTriggerAck primitive is used by IUT to send acknowledgement back
to the Test System.

The Upper Tester Application in SUT can be implemented as an embedded source
code. An example for implementation of automated AE test for Registration is
shown as figure 5.4.2.1-1.

Figure 5: Figure 5.4.2.1-1: Example of automated AE test using Ut interface

12

5.4.2.2 Upper Tester Control Primitives

5.4.2.2.1 Introduction The upper tester triggering message is used to trans-
port control commands between Test System and the Upper Tester Application.
The control command will contain essential parameters that are required for
certain test case.

The upper tester triggering message type maps to particular message formats for
exchanging data and those message formats are defined by TTCN-3 primitive as
shown at table 5.4.2.2.1-1, U tTrigger and U tTriggerAck primitive.

Table 3: Table 5.4.2.2.1-1: Mapping of TTCN-3 Primitives to
oneM2M Service Primitives

Upper Tester Control Message Type TTCN-3 Primitives Direction
Trigger UtTrigger Primitive TS → UT
Trigger Acknowledgement UtTriggerAck Primitive UT → TS

5.4.2.2.2 UtTrigger and UtTriggerAck Primitives The UtTrigger primi-
tive is initialized by the Test System to send triggering message to the target
IUT as depicted in figure 5.4.2.2.2-1. The IUT will send acknowledgement
message back to the Test System using UtTriggerAck primitive if trigger message
is successfully transported to the IUT. Then IUT starts interaction with Test
System through oneM2M request and response primitives.

Figure 6: Figure 5.4.2.2.2-1: Trigger message flow

Table 5.4.2.2.2-1 defines UtTrigger and UtTriggerAck primitives including
oneM2M data types to which are mapped as well as examples to show how to
implement UtTrigger and UtTriggerAck primitives.

13

Table 4: Table 5.4.2.2.2-1: UtTrigger and UtTriggerAck Primitive

Ut
Control
Primi-
tive
mes-
sage

Mapping
to
oneM2M
data
types DescriptionReference

Triggering
Message HTTP

UtTrigger
Primi-
tive

requestPrimitive

ONLY
essen-
tial
param-
eters
in-
cluded
for
certain
test
case
See
NOTE
1

oneM2M
TS-0004
[2]

EXAMPLE 1: If the test
objective is to test “Test
triggers IUT to execute a
test case for creation of <
AE > with abels attribute
under a CSEBase resource",
then triggering message would be
serialized as following.

14

Ut
Control
Primi-
tive
mes-
sage

Mapping
to
oneM2M
data
types DescriptionReference

Triggering
Message HTTP
Request
{
“m2m:rqp” :{
“op”: 1,
//indicate
CREATE
operation
“ty”: 2,
//indicate AE
resource type
“to”:
{TEST_SYSTEM_ADDRESS},
“pc”: {
“m2m:ae”: {
“lbl”:“UNINITIALIZED”
//indicate that
attribute labels
needs to be
included
},
}
“rvi”: “2a” } }
}

Request
POST
/{SUT_UT_APPLICATION_URL}
HTTP/1.1
Host:
{SUT_IP_ADDRESS:PORT}
Content-
Length:
{PAY-
LOAD_LENGTH}
Content-
Type:
applica-
tion/json

{“m2m:rqp” :{
“op”: 1,
//indicate
CREATE
operation
“ty”: 2,
//indicate AE
resource type
“to”:
{TEST_SYSTEM_ADDRESS},
“pc”: {
“m2m:ae”: {
“lbl”:“UNINITIALIZED”
//indicate that
attribute labels
needs to be
included
}
},
“rvi”: “2a”
}
}

15

Ut
Control
Primi-
tive
mes-
sage

Mapping
to
oneM2M
data
types DescriptionReference

Triggering
Message HTTP
EXAMPLE 2: If the test
objective is to test **“Test
System triggers IUT to execute a
test case for delete of < AE _>
resource"**, then triggering
message would be serialized as
following.
Request
{
“m2m:rqp” :{
“op”: 4,
//indicate
DELETE
operation
“to”:{TARGET_AE_RESOURCE_ADDRESS},
//indicate
Target AE
resource
address “rvi”:
“2a”
}
}

Request
POST
/{SUT_UT_APPLICATION_URL}
HTTP/1.1
Host:
{SUT_IP_ADDRESS:PORT}
Content-
Length:
{PAY-
LOAD_LENGTH}
Content-
Type:
applica-
tion/json

{“m2m:rqp” :{
“op”: 4,
//indicate
DELETE
peration
“to”:{TARGET_AE_RESOURCE_ADDRESS},
//indicate
Target AE
resource
address
“rvi”: “2a”
}
}

16

Ut
Control
Primi-
tive
mes-
sage

Mapping
to
oneM2M
data
types DescriptionReference

Triggering
Message HTTP

N/A Special
upper
tester
com-
mands

N/A “RESET” Request
POST
/{SUT_UT_APPLICATION_URL}
HTTP/1.1
Host :
{SUT_IP_ADDRESS:PORT}
X-M2M-
UTCMD:
Reset

UtTrigger
Ack
Primi-
tive

responsePrimitiveONLY
re-
spons-
eSta-
tus-
Code
at-
tribute
in-
cluded

See
Note 2.

oneM2M
TS-0004
[2]

Response
{
“m2m:rsp”: {
“rsc”: 2000
}
}

For any
triggering
response, it
only contains
aresponse
status code,
and the
response status
code for the
triggering
operation can
only be set to
either either
2000 (OK) or
4000
(BAD_REQUEST)
according to
the rules for
triggering
operations.

Response
HTTP/1.1 200
OK
X-M2M-RSC:
2000

NOTE 1: Additional rules defined in table 5.4.4.2.2-3 are also applied.
NOTE 2: Attribute response status code is defined at table 5.4.4.2.2-3.

17

The rules for defining UtTrigger and UtTriggerAck primitives are:

1. UtTrigger primitive is represented in requestPrimitive serialized in JSON
format.

2. UtTrigger primitive shall be interpreted as follows:

• Any attribute/parameter containing a value shall be present and equal
in the triggered request primitive.

• Any attribute/parameter containing “UNINITIALIZED” value shall
be present in the triggered request primitive.

• Any other attribute/parameter shall comply with oneM2M TS-0004
[2].

3. Parameters within UtTrigger are listed as following:

• operation: (mandatory) operation type that IUT is triggered to
perform.

• resourceType: (optional) resource type of a target resource against
which IUT is triggered to perform certain operation

• to: (mandatory) target resource against which IUT is triggered to
perform certain operation.

• primitiveContent: (optional) represents the resource attributes that
shall be included in the requestPrimitive.

Table 5: Table 5.4.2.2.2-3: Definition of ResponseStatusCode for
UtTriggerAck primitive

Response Status
Code Description

Response
Status Code
Value Interpretation

OK 2000 The SUT receives successfully the
triggering message from Test System

BAD_REQUEST 4000 The SUT does not interpret correctly
the UtTrigger primitive

NOTE: Only above two response status codes are allowed to use in
UtTriggerAck primitive.

5.4.2.2.3 Control Communication Protocol Protocol used for proceeding
communications between Test System and Upper Tester Application is designated
to the Hypertext Transfer Protocol (HTTP) protocol owning it is an application
protocol that is widely supported and various intrinsic features such as persistent
connection, ease of programming, flexibility, etc.

5.4.2.2.4 Control Message Serialization Control commands that are
wrapped within a request body of HTTP message shall be serialized into

18

JavaScript Object Notation (JSON) because it is very lightweight and easy
to parse and generate for machines.

5.4.3 acPort

The acPort is included in the oneM2M ATS in order to be able to control and
configure the test adaptor for specific cases.

5.4.4 infoPort

The infoPort is included in the oneM2M ATS in order for the TTCN-3 test
components to be able to exchange information such as last response primitives
or request primitives received by a component, retrieved primitive contents.

5.5 Test components
5.5.1 Tester

The Tester test component includes a set of ports, timers and variables that are
common to the other defined components which are described in table 5.5.1-1.

Table 6: Table 5.5.1-1: Tester component elements

Name
Instance
type

Element
type Description

acPort port AdapterControlPortPort that communicates
with the adapter for
sending configuration
parameters

infoPort port InfoPort Port between test
components for
exchanging information

utPort port UpperTesterPortPort that communicates
with the UT Application
for triggering actions on
the IUT

tc_ac timer N/A Timer for the reception
of a message

tc_wait timer N/A Timer for the reaction
of the IUT to an upper
tester primitive

tc_done timer N/A Timer for waiting
completion of a
component behaviour

19

Name
Instance
type

Element
type Description

vc_config variable ConfigurationsConfiguration being
used for the given test
case |

vc_testSystemRole variable TestSystemRoleRole of the test
component

vc_componentRegistered variable boolean Flag to indicate when a
component has
registered to the IUT

vc_resourcesList variable MyResourcesListList of all resources
created by the test
system on the IUT

vc_resourcesIndexToBeDeletedvariable IntegerList List of indexes of
resources created by the
test system on the IUT
that need to be deleted

vc_acpIndex variable integer Index of
accessControlPolicy
resource used by the
test system by default
(when required)

vc_request variable MsgIn Latest request primitive
received/sent

vc_response variable MsgIn Latest response
primitive received/sent

vc_aeSimu variable default Reference to the default
behaviour for an
AeSimu component

vc_cseSimu variable default Reference to the default
behaviour for an
CseSimu component

vc_primitiveContentRetrievedResourcevariable PrimitiveContentLatest content of a
RETRIEVE operation

vc_myInterfaces variable Interfaces Parameters for the ports
of the given component:

• Port (mcaPort,
mcaPortIn,
mccPort,
mccPortIn)

• Host (SUT IP
address :port)

• Protocol binding
• Serialization

20

Name
Instance
type

Element
type Description

Note that vc_aeSimu and vc_cseSimu are not common to the other defined
test components, but those variables are required in Tester for the correct
activation/deactivation of default behaviours.

5.5.2 AeSimu

The AeSimu test component extends the Tester component by adding elements
specific to an AE entity. Table 5.5.2-1 summarizes those elements.

Table 7: Table 5.5.2-1: AeSimu component elements

Name Instance type Element type Description
mcaPort port OneM2MPort Port that

implements the
mca interface
when test system
is the client
(sending requests)

mcaPortIn port OneM2MPort Port that
implements the
mca interface
when test system
is the server
(receiving
requests)

vc_ae2 test component AeSimu Reference to the
AE2 component
when required

vc_cse1 test component CseSimu Reference to the
CSE1 component
when CF02 is
used

vc_auxiliaryAe2Up variable boolean Flag to indicate
that AE2
component has
been started

vc_aeIndex variable integer Index of the AE
resource in
vc_resourcesList
created by the
AeSimu
component

21

5.5.3 CseSimu

The CseSimu test component extends the Tester component by adding elements
specific to an CSE entity. Table 5.5.3-1 summarizes those elements.

Table 8: Table 5.5.3-1: CseSimu component elements

Name Instance type Element type Description
mcaPort port OneM2MPort Port that

implements the
mca interface
when test system
is the client
(sending requests)

mcaPortIn port OneM2MPort Port that
implements the
mca interface
when test system
is the server
(receiving
requests)

mccPort port OneM2MPort Port that
implements the
mcc interface
when test system
is the client
(sending requests)

mccPortIn port OneM2MPort Port that
implements the
mcc interface
when test system
is the server
(receiving
requests)

vc_ae1 test component AeSimu Reference to the
AE1 component
when CF02
(CseSimu as
master) is used

vc_localResourcesListvariable MyResourcesList List of all
resources created
by the IUT on
the test system

22

Name Instance type Element type Description
vc_localRemoteCseIndexvariable integer Index of the

remoteCSE
resource in
vc_localResourcesList
representing the
IUT (CSE)

vc_remoteCseIndex variable integer Index of the
remoteCSE
resource in
vc_resourcesList
representing the
CseSimu
component

vc_cSEBaseIndex variable integer Index of the
CSEBase
resource in
vc_localResourcesList
of the CseSimu
component

vc_cseType variable CseTypeID CSE type of the
test system
(default is MN)

5.6 Test strategy
This clause introduces the test strategy being used for the TTCN-3 test cases.
The chosen strategy permits to have a clear structure of the code that facilitates
an easy navigation throw the different test steps.

The use of the TTCN-3 MTC and PTC(s) is as depicted in figure 5.6-1.

Figure 7: Figure 5.6-1: Use of TTCN-3 components

At the start of the test case execution, the MTC is created. Then, the MTC
executes the following steps:

23

• Step 1) initialization of the master PTC.

• Step 2) initialization of some parameters if required for the permutation
test cases.

• Step 3) running of the appropriate function on the master PTC. The
function run on the master PTC implements a given Test Purpose. Such
function follows a code structure as indicated here below:

– Local Variables, declaration of local variables.
– Test Control, checking IUT capability parameters required for the

proper execution of the test.
– Test Component Configuration, that initializes the given test compo-

nent and other test components acting as slave PTC(s) as required
by a given configuration.

– Test adapter configuration, that configures the test adapter throw the
acPort if required.

– Preamble, that implements the necessary test steps as described in the
Initial conditions of a Test Purpose. It may also implement additional
test steps which are required for the correct execution of the test.

– Test body, that implements the test steps as described in the Expected
behaviour of a Test Purpose.

– Postamble, that implements the necessary test steps to bring the IUT
back to the initial state.

– Tear down, that finalizes properly the TTCN-3 ports used by the
different test components depending on the configuration.

While master PTC follows the test structure described above, slave PTC(s) run
only certain procedures, usually one by one, as mandated by the master PTC.

A procedure usually implements a oneM2M request-response exchange between
a given PTC and the IUT, although it can implement any other specific action
(sending or reception of a message, several request-response exchanges, etc.).

• Step 4) checking of some parameters if required for the permutation test
cases.

This test strategy may slightly vary for certain cases where specific requirements
need to be fulfilled.

6 Untestable Test Purposes
Void.

24

7 ATS Conventions
7.0 Introduction
The ATS conventions are intended to give a better understanding of the ATS
but they also describe the conventions made for the development of the ATS.
These conventions shall be considered during any later maintenance or further
development of the ATS.

The ATS conventions contain two clauses, the naming conventions and the
implementation conventions. The naming conventions describe the structure of
the naming of all ATS elements. The implementation conventions describe the
functional structure of the ATS.

To define the ATS, the guidelines of oneM2M TS-0015 [i.2] were considered.

7.1 Testing conventions
7.1.1 Testing states

7.1.1.1 Initial state All test cases start with the function f_preamble_XYZ.
This function brings the IUT in an “initialized” state by performing some actions
such as registration of AE, creation of auxiliary access control policy resource,
creation of additional needed resources.

7.1.1.2 Final state All test cases end with the function f_postamble_XYZ.
This function brings the IUT back in an “idle” state which means deletion of all
created resources being used by the test case so that next test case execution is
not disturbed.

As necessary, further actions may be included in the f_postamble functions.

7.2 Naming conventions
7.2.1 General guidelines

This test suite follows the naming convention guidelines provided in oneM2M
TS-0015 [i.2].

The naming convention is based on the following underlying principles:

• in most cases, identifiers should be prefixed with a short alphabetic string
(specified in table 7.2.1-1) indicating the type of TTCN3 element it repre-
sents;

• suffixes should not be used except in those specific cases identified in table
7.2.1-1;

• prefixes and suffixes should be separated from the body of the identifier
with an underscore (“_”);

EXAMPLE 1: c_sixteen, t_wait.

25

• only module names, data type names and module parameters should begin
with an uppercase letter. All other names (i.e. the part of the identifier
following the prefix) should begin with a lowercase letter;

• the start of second and subsequent words in an identifier should be indicated
by capitalizing the first character. Underscores should not be used for this
purpose.

EXAMPLE 2: f_initialState.

Table 7.2.1-1 specifies the naming guidelines for each element of the TTCN3
language indicating the recommended prefix, suffixes (if any) and capitalization.

Table 9: Table 7.2.1-1: TTCN-3 generic naming conventions

Language element
Naming
convention Prefix

Example
identifier

Module Use upper-case
initial letter

none OneM2M_Templates

Group within a
module

Use lower-case
initial letter

none messageGroup

Data type Use upper-case
initial letter

none SetupContents

Message template Use lower-case
initial letter

m_ m_setupInit

Message template
with wildcard or
matching
expression

Use lower-case
initial letters

mw_ mw_anyUserReply

Signature
template

Use lower-case
initial letter

s_ s_callSignature

Port instance Use lower-case
initial letter

none signallingPort

Test component
instance

Use lower-case
initial letter

none userTerminal

Constant Use lower-case
initial letter

c_ c_maxRetransmission

Constant (defined
within component
type)

Use lower-case
initial letter

cc_ cc_minDuration

External constant Use lower-case
initial letter

cx_ cx_macId

Function Use lower-case
initial letter

f_ f_authentication()

External function Use lower-case
initial letter

fx_ fx_calculateLength()

26

Language element
Naming
convention Prefix

Example
identifier

Altstep
(incl. Default)

Use lower-case
initial letter

a_ a_receiveSetup()

Test case Use ETSI
numbering

TC_ TC_COR_0009_47_ND

Variable (local) Use lower-case
initial letter

v_ v_macId

Variable (defined
within a
component type)

Use lower-case
initial letters

vc_ vc_systemName

Timer (local) Use lower-case
initial letter

t_ t_wait

Timer (defined
within a
component)

Use lower-case
initial letters

tc_ tc_authMin

Module
parameters for
PICS

Use all upper
case letters

PICS_ PICS_DOOROPEN

Module
parameters for
other parameters

Use all upper
case letters

PX_ PX_TESTER_STATION_ID

Formal
Parameters

Use lower-case
initial letter

p_ p_macId

Enumerated
Values

Use lower-case
initial letter

e_ e_syncOk

7.2.2 oneM2M specific TTCN-3 naming conventions

Next to such general naming conventions, table 7.2.2-1 shows specific naming
conventions that apply to the oneM2M TTCN-3 ATS.

Table 10: Table 7.2.2-1: oneM2M specific TTCN-3 naming conven-
tions

Language element
Naming
convention Prefix

Example
identifier

oneM2M Module Use upper-case
initial letter

OneM2M_ OneM2M_Testcases_

Module
containing
oneM2M types

Use upper-case
initial letter

OneM2M_Types OneM2M_Types

27

Language element
Naming
convention Prefix

Example
identifier

Module
containing types
and values

Use upper-case
initial letter

OneM2M_TypesAndValuesOneM2M_TypesAndValues

Module
containing
Templates

Use upper-case
initial letter

OneM2M_TemplatesOneM2M_Templates

Module
containing test
cases

Use upper-case
initial letter

OneM2M_Testcases OneM2M_Testcases

Module
containing
functions

Use upper-case
initial letter

OneM2M_FunctionsOneM2M_Functions

Module
containing
external functions

Use upper-case
initial letter

OneM2M_ExternalFunctionsOneM2M_ExternalFunctions

Module
containing
components,
ports and
message
definitions

Use upper-case
initial letter

OneM2M_TestSystemOneM2M_TestSystem

Module
containing
module
parameters

Use upper-case
initial letter

OneM2M_Pixits OneM2M_Pixits

7.2.3 Usage of Log statements

All TTCN-3 log statements use the following format using the same order:

• The TTCN-3 test case or function identifier in which the log statement is
defined.

• One of the categories of log: INFO, WARNING, ERROR, TIMEOUT,
NONE.

• Free text.

EXAMPLE 1: **log** ("f_utInitializeIut: INFO: IUT initialized");

Furthermore, the following rules are applied too:

• All TTCN-3 setverdict statements are combined (as defined in TTCN-3
- ETSI ES 201 873-1 [6]) with a log statement following the same above
rules (see example 2).

EXAMPLE 2: **setverdict** (**pass** , "TC_ONEM2M_CSE_DMR_CRE_001:

28

Received correct message");

7.2.4 Test Case (TC) identifier

Table 11: Table 7.2.4-1: TC naming convention

Identifier: TC_<root>_<gr>_<sgr>_<nn>_<per>
<root> = root ONEM2M oneM2M
<gr> = group CSE

AE
CSE testing
AE testing

<sgr> = subgroup REG
DMR
SUB
GMG
DIS
LOC
DMG
CMDH
SEC

Registration
Data Management and Repository
Subscription and Notification
Group Management
Discovery
Location
Device Management
Communication Management and
Delivery Handling
Security

<nn> = sequential
number

001 to 999

<per> = permutation P1_P2_..PN Permutation parameters
EXAMPLE: TP identifier: TP/oneM2M/CSE/DMR/CRE/001
TC identifier: TC_ONEM2M_CSE_DMR_CRE_001.

7.3 IXIT
The following parameters are used by the oneM2M ATS for the correct execution
of the test cases.

Table 12: Table 7.3-1: oneM2M ATS IXITs

GROUP IXIT NAME DESCRIPTION
DEFAULT
VALUE

IutParameters PX_IN_CSE MN-CSE true
IutParameters PX_MN_CSE IN-CSE false
IutParameters PX_ASN_CSE ASN-CSE false
IutParameters PX_SUT_ADDRESSSUT address “127.0.0.1:8080”
IutParameters PX_UT_IMPLEMENTEDUpper Tester

implemented
false

IutParameters PX_CSE_NAME IUT CSE Name “cseName”

29

GROUP IXIT NAME DESCRIPTION
DEFAULT
VALUE

IutParameters PX_CSE_ID IUT CSE-ID with
SP-relative-CSE-
ID format
(relative)
according to
oneM2M TS-0001
[1], table 7.2-1

“/cseId”

IutParameters PX_CSE_RESOURCE_IDIUT CSE
resource ID with
Unstructured-
CSE-relative-
Resource-ID
(relative) format
according to
oneM2M
TS-0001 [1], table
7.2-1

“cseResourceId”

IutParameters PX_SP_ID IUT M2M-SP-ID
with M2M-SP-ID
format (absolute)
according to
oneM2M TS-0001
[1], table 7.2-1
Unstructured-
CSE-relative
-Resource-ID

“//om2m.org”

IutParameters PX_SUPER_AE_IDAE-ID with
privileges to
CREATE at the
IUT CSEBase
with AE-ID-Stem
format (relative)
according to
oneM2M TS-0001
[1], table 7.2-1

“admin:admin”

30

GROUP IXIT NAME DESCRIPTION
DEFAULT
VALUE

IutParameters PX_SUPER_CSE_IDCSE-ID with
privileges to
CREATE at the
IUT CSEBase
with SPrelative-
CSE-ID format
(relative)
according to
oneM2M TS-0001
[1], table 7.2-1

“/admin:admin”

IutParameters PX_ALLOWED_C_AE_IDS {“C-
AllowedAeId”}

IutParameters PX_NOT_ALLOWED_C_AE_IDS {“C-
NotAllowedAeId”}

IutParameters PX_ALLOWED_S_AE_IDS {“S-
AllowedAeId”}

IutParameters PX_NOT_ALLOWED_S_AE_IDS {“S-
NotAllowedAeId”}

IutParameters PX_NOT_ALLOWED_APP_ID “NotAllowedAppId”
IutParameters PX_ADDRESSING_METHODAddressing

method
e_hierarchical

IutParameters PX_PRIMITIVE_SCOPEPrimitive scope e_cseRelative
IutParameters PX_WS_PROTOCOLWebSocket

protocol
“oneM2M.R2.0.xml”

IutParameters PX_REQUEST_URIWebSocket
context

“/”

IutParameters PX_HOSTING_CSE_IDHosting CSE-ID
for MQTT

“CSE-ID”

IutParameters PX_CREDENTIAL_IDCredential-ID for
MQTT

“admin:admin”

IutParameters PX_XML_NAMESPACEXML Namespace “m2m=”“http://www.onem2m.org/xml/protocols” “”
IutParameters PX_ACOR AccessControlOriginators{“all”}
IutParameters PX_TCONFIG_IUTTime to configure

IUT after a
requested action

10.0

31

GROUP IXIT NAME DESCRIPTION
DEFAULT
VALUE

TesterParameters PX_TS_AE1 AE1 component
settings

aeIdStem = “ “
appId
=”NMyApp1Id”
mcaPort and
mcaPortIn
settings which
include per port
the following info:
Binding:
- bindingProtocol
- bindingDesc:
- tsAddress
- localPort
- sutAddress
- remotePort
Serialization

TesterParameters PX_TS_AE2 AE2 component
settings

aeIdStem = “ “
appId
=”NMyApp2Id”
mcaPort and
mcaPortIn
settings which
include per port
the following info:
Binding:
- bindingProtocol
- bindingDesc:
- tsAddress
- localPort
- sutAddress
- remotePort
Serialization

32

GROUP IXIT NAME DESCRIPTION
DEFAULT
VALUE

TesterParameters PX_TS_CSE1 CSE1 component
settings

cseName =
“CSE1_NAME”
cseId =
“/CSE1_ID”
cseResourceId =
“CSE1_RESOURCE_ID”
spId =
“//onem2m.org”
supportedResourceType
= {int1, int2,
int3, int16}
mcaPort,
mcaPortIn,
mccPort and
mccPortIn
settings which
include per port
the following info:
Binding:
- bindingProtocol
- bindingDesc:
- tsAddress
- localPort
- sutAddress
- remotePort
Serialization

PX_TS_UT UpperTester
settings

url =
“http://127.0.0.1:43000/”

ExecutionParametersPX_RESOURCES_TO_BE_DELETED(For debugging
purposes)

{“MyAe”, “My-
AccessControlPol-
icyResource”,
“SubscriptionVeri-
ficationAcp”,
“MyAcp”,
“MyRemoteC-
SEResource”}

ExecutionParametersPX_RUN_POSTAMBLE(For debugging
purposes)

true

33

8 TTCN-3 Verifications
The principles for Verifying the TTCN-3 test code are given in oneM2M TS-0015
[i.2].

All test cases provided with the present document in annex A which correspond
to at least one of the product profiles defined in oneM2M TS-0025 [i.3] have been
verified at the time of publication of the present document which corresponds
with the TTCN-3 code gitlab tag provided in annex A.

Annex A (normative): TTCN-3 library modules
A.1 Electronic annex, zip file with TTCN-3 code
This ATS has been produced using the Testing and Test Control Notation
(TTCN) according to ETSI ES 201 873-1 [6].

This test suite has been compiled error-free using two different commercial
TTCN-3 compilers.

The TTCN-3 library modules, which form parts of the present document, are
contained in the following gitLab tag:

https://git.onem2m.org/TST/ATS/-/tags/TS-0019-baseline-v2_9_2

Annex B (informative): Bibliography
ISO/IEC 9646-6 (1994): “Information technology - Open Systems Interconnection
- Conformance testing methodology and framework - Part 6: Protocol profile
test specification”.

oneM2M TS-0017: “Implementation Conformance Statement”.

oneM2M TS-0031: “Feature catalogue”.

History

Document history
V2.0.0 2018-07-

27
Base document from TS-0019 v1.0.0

V2.1.0 2018-11-
20

Integrated approved contributions:
• TST-2018-0147-TS-

0019_Test_strategy_and_test_component_details_R2

34

https://git.onem2m.org/TST/ATS/-/tags/TS-0019-baseline-v2_9_2

Document history
V2.2.0 2019-04-

24
Integrated approved contributions:

• TDE-2019-0050-TS-
0019_Test_strategy_and_pixits_R2

V2.3.1 July
2019

Partners pre-processing done by editHelp! e-mail:
mailto:edithelp@etsi.org

V2.4.0 Sep 2019 Integrated approved contributions:
• TDE-2019-0162-TTCN-3_Test_cases

V2.5.0 May
2020

Integrated approved contributions:
• TDE-2020-0043-TS-0019_TTCN-

3_Test_cases_R2
• TDE-2020-0044R01-TS-

0019_Update_Test_components_variables_R2
V2.6.0 Jan 2021 Integrated approved contributions:

• TDE-2020-0105-TS-0019_TTCN3_Test_cases_R2
V2.7.0 Jan 2022 Integrated approved contributions:

• TDE-2021-0070-TS-0019_TTCN3_Test_cases_R2
• TDE-2022-0001-TS-

0019_Update_Test_components_variables_R2
V2.8.0 Apr 2023 Integrated approved contributions:

• TDE-2023-0001-TS-0019_TTCN3_Test_cases_R2
V2.9.0 Jan 2024 Integrated approved contributions:

• TDE-2023-0050-TS-0019-
Adaptation_from_converted_version_R2

V2.9.1 2024-02-
15

Some editorials

V2.9.2 2025-02-
13

Partners pre-processing done by editHelp!
e-mail: edithelp@etsi.org

35

mailto:edithelp@etsi.org
edithelp@etsi.org

	Contents
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.2 Abbreviations

	4 Conventions
	5 Abstract Test Method (ATM)
	5.1 Abstract protocol tester (APT)
	5.2 Test Configuration
	5.2.1 AE Test Configuration

	5.3 Test architecture
	5.4 Ports and ASPs (Abstract Services Primitives)
	5.4.0 Introduction
	5.4.1 mcaPort, mcaPortIn, mccPort, mccPortIn
	5.4.2 utPort
	5.4.3 acPort
	5.4.4 infoPort

	5.5 Test components
	5.5.1 Tester
	5.5.2 AeSimu
	5.5.3 CseSimu

	5.6 Test strategy

	6 Untestable Test Purposes
	7 ATS Conventions
	7.0 Introduction
	7.1 Testing conventions
	7.1.1 Testing states

	7.2 Naming conventions
	7.2.1 General guidelines
	7.2.2 oneM2M specific TTCN-3 naming conventions
	7.2.3 Usage of Log statements
	7.2.4 Test Case (TC) identifier

	7.3 IXIT

	8 TTCN-3 Verifications
	Annex A (normative): TTCN-3 library modules
	A.1 Electronic annex, zip file with TTCN-3 code

	Annex B (informative): Bibliography
	History

