oneM2M
Technical Specification

oneM2M
Technical Specification

Document Number
Document Name:

Date:
Abstract:

Template Version:23 February 2015
(Do not modify)

oneM2M-TS-0019-V-4.1.1

Abstract Test Suite and
Implementation eXtra Information for
Test

2024 March 1

Abstract Test Suite and
Implementation eXtra Information for
Test consists of :

- Definition of the Abstract Protocol
Tester (APT)

- Definition of TTCN-3 test
architecture

- Development of TTCN-3 test suite,
e.g. naming conventions, code
documentation, test case structure.

- IXIT proforma;\

Template Version:23 February 2015
(Do not modify)

This Specification is provided for future development work within oneM2M only.
The Partners accept no liability for any use of this Specification.

The present document has not been subject to any approval process by the
oneM2M Partners Type 1. Published oneM2M specifications and reports for
implementation should be obtained via the oneM2M Partners’ Publications
Offices.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which
address the need for a common M2M Service Layer that can be readily embedded
within various hardware and software, and relied upon to connect the myriad of
devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org
Copyright Notification

(c) 2019, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI,
TTA, TTC).

All rights reserved.
The copyright extends to reproduction in all media.
Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals
who have the appropriate degree of experience to understand and interpret its
contents in accordance with generally accepted engineering or other professional
standards and applicable regulations. No recommendation as to products or
vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMA-
TION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS
TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND
FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO
oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT
OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS
DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT
SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES
ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PRO-
VIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

1 Scope
2 References

2.1 Normative references
2.2 Informative references
3 Definition of terms, symbols and abbreviations
3.1 Terms
3.2 Symbols
3.2 Abbreviations
4 Conventions
5 Abstract Test Method (ATM)
5.1 Abstract protocol tester
5.2 Test Configuration
5.2.1 AE Test Configuration
5.3 Test architecture
5.4 Ports and ASPs (Abstract Services Primitives)
5.4.0 Introduction
5.4.1 mcaPort, mcaPortIn, mccPort, mccPortIn
5.4.2 mcenPort, menPortIn
5.4.3 mccPortInternal
5.4.4 utPort
5.4.4.0 Introduction
5.4.4.1 Usage for Automated AE Testing
5.4.4.2 Upper Tester Control Primitives
5.4.4.2.1 Introduction
5.4.4.2.2 UtTrigger and UtTriggerAck Primitives
5.4.4.2.3 Control Communication Protocol
5.4.4.2.4 Control Message Serialization
5.4.5 acPort
5.4.6 infoPort
5.5 Test components
5.5.1 Tester
5.5.2 AeSimu
5.5.3 CseSimu
5.5.4 ScefSimu
5.6 Test strategy
6 Untestable Test Purposes
7 ATS Conventions
7.0 Introduction
7.1 Testing conventions
7.1.1 Testing states
7.1.1.1 Initial state
7.1.1.2 Final state
7.2 Naming conventions
7.2.1 General guidelines
7.2.2 oneM2M specific TTCN-3 naming conventions
7.2.3 Usage of Log statements
7.2.4 Test Case (TC) identifier
7.3 IXIT

8 TTCN-3 Verifications

Annex A (normative): TTCN-3 library modules
A.1 Electronic annex, zip file with TTCN-3 code

Annex B (informative): Bibliography

History

1 Scope

The present document contains the Abstract Test Suite (ATS) for oneM2M as
defined in oneM2M TS-0001 [1] and oneM2M TS-0004 [2] in compliance with
the relevant requirements and in accordance with the relevant guidance given in
ISO/IEC 96467 [5].

The objective of the present document is to provide a basis for conformance
tests for oneM2M products giving a high probability of interoperability between
different manufacturers’ equipment.

The ISO standard for the methodology of conformance testing (ISO/TEC 96461
[3] and ISO/TEC 96462 [4]) as well as oneM2M TS-0015 Testing Framework [i.2]
are used as a basis for the test methodology.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition
number or version number) or nonspecific. For specific references, only the cited
version applies. For non-specific references, the latest version of the referenced
document (including any amendments) applies.

The following referenced documents are necessary for the application of the
present document.

1] oneM2M TS-0001: “Functional Architecture”.

. |
.
[

]
2] oneM2M TS-0004: “Service Layer Core Protocol”.
]

3] ISO/IEC 9646-1 (1994): “Information technology - Open Systems
Interconnection - Conformance testing methodology and framework - Part
1: General concepts”.

o [4] ISO/IEC 9646-2 (1994): “Information technology - Open Systems
Interconnection - Conformance testing methodology and framework - Part
2: Abstract Test Suite specification”.

e [5] ISO/IEC 9646-7 (1995): “Information technology - Open Systems
Interconnection - Conformance testing methodology and framework - Part
7: Implementation Conformance Statements”.

o [6] ETSI ES 201 873-1 (V4.5.1): “Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3
Core Language”.

e [7] oneM2M TS-0018: “Test Suite Structure and Test Purposes”.
o [8] 3GPP TS 29.122; T8 reference point for Northbound APIs (Release 15)

2.2 Informative references

References are either specific (identified by date of publication and/or edition
number or version number) or nonspecific. For specific references, only the cited
version applies. For non-specific references, the latest version of the referenced
document (including any amendments) applies.

The following referenced documents are not necessary for the application of the
present document but they assist the user with regard to a particular subject
area.

e [i.1] oneM2M Drafting Rules. > NOTE: Available at http://www.onem2m.
org/images/files/oneM2M-Drafting-Rules.pdf.

o [i.2] oneM2M TS-0015: “Testing Framework”.
o [i.3] oneM2M TS-0025: “Product profiles”.

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the terms given in ISO/IEC 96461
[3], ISO/IEC 96467 [5] and oneM2M TS-0015 [i.2] apply.

3.2 Symbols
Void.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AE Application Entity

APT Abstract Protocol Tester

ATM Abstract Test Method

ATS Abstract Test Suite

CoAP Constrained Application Protocol
CSE Common Service Entity

HTTP Hypertext Transfer Protocol

IP Internet Protocol

http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf
http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf

IUT Implementation Under Test

IXIT Implementation eXtra Information for Test
JSON JavaScript Object Notation

MQTT Message Queuing Telemetry Transport

MTC Main Test Component

PA Platform Adaptor

PICS Protocol Implementation Conformance Statement
PTC Paralell Test Component
PX PiXit

SA System Adaptor

SUT System Under Test

TC Test Case

TCP Transmission Control Protocol
TP Test Purposes

TS Test System

TSS Test Suite Structure

TTCN Tree and Tabular Combined Notation
UDP User Datagram Protocol

UT Upper Tester

XML eXtensible Markup Language

4 Conventions

The key words “Shall”, “Shall not”, “May”, “Need not”, “Should”, “Should not”
in this document are to be interpreted as described in the oneM2M Drafting
Rules [i.1].

5 Abstract Test Method (ATM)

5.1 Abstract protocol tester

An abstract protocol tester (APT) is a process that provides behaviours for
testing an IUT by emulating a peer IUT at the same layer, and enabling to
address a single test objective.

APTs used by the oneM2M test suite are described in figure 5.1-1. The test
system will simulate valid and invalid protocol behaviour, and will analyse the
reaction of the IUT.

As figure 5.1-1 illustrates, the corresponding ATS needs to use lower layers to
establish a proper connection to the system under test (SUT) over a physical link
(Lower layers link). Four different lower layers have been specified corresponding
to the binding protocols considered in oneM2M: HTTP, CoAP, WebSocket and
MQTT.

oneM2M Test System System Under Test oneM2M Test System J System Under Test
2 oneM2M
oneM2M ATS 3 oneM2M ATS messages
1 i
N B] I |
HTTP HTTP CoAP CoAP
TCP TCP UDP UDP
1P 1P 1P IP
Ethernet Ethernet Ethernet Ethernet
Lower Layers Lower Layers Lower Layers Lower Layers
Y r'y e 4
Lower Layers link Lower Layers link
oneM2M Test System System Under Test oneM2M Test System J System Under Test
oneMZM oneM2M
oneM2M ATS T o onsMZMATS I fhessages | T
T i 1
Y | [|
MQTT MQTT WebSocket WebSocket
TCP TCP TCP TGP
IP IP IP IP
Ethernet Ethernet Ethernet Ethernet
Lower Layers Lower Layers Lower Layers Lower Layers
3 Y . 4
L L 1|
Lower Layers link Lower Layers link

Figure 1: Figure 5.1-1: Abstract protocol testers - oneM2M

5.2 Test Configuration
5.2.1 AE Test Configuration

Test configurations are defined to test different entities such as CSE and AE,
etc.

Figure 5.2.1-1 shows a AE test configuration which is mapped to CF03 in
clause 6.3.3.3 in oneM2M TS0015 [i.2] and aligns with conformance test system
architecture in clause 6.3.3.2 in oneM2M TS-0015 [i.2].

The TTCN-3 Test Component in Test System sends triggering actions or be-
haviour to the Upper Tester Application of SUT through upper tester transport
link Ut while the IUT sends/receives oneM2M service primitives through Mca
to/from CSE in Test System.

5.3 Test architecture

The approach for the implementation of an Abstract Protocol Tester selected
in oneM2M follows the recommendation of the oneM2M Testing Framework
oneM2M TS-0015 [i.2] where the TTCN-3 language and its architecture are
recommended.

Following this recommendation the oneM2M tester architecture comprises a
non-platform dependent Test Suite, and a platform dependent part.

ﬂ EST SYSTEM

N

TTCN-3 Test Ut
Component
— J
)
CSE Mca

J

N

Upper Tester
Application

IUT (AE)

)

Figure 2: Figure 5.2.1-1: AE test configuration

TTCn-3)

oneM2M Conformance Tester

onheM2M Abstract
Test Suite

oneM2M Test Adaptor

Platform
independent Design

Platform
dependent*
Design

> NOTE: However, it can be implemented in a semi-independent manner, which
will minimize the dependency to those elements. >

e oneM2M TTCN -3 Abstract Test Suite: the test suite is platform
independent, and it is the cornerstone of the architecture. It allows a
complete decoupling between the test suite and the rest of the test system.
The test suite is composed of a complete set of test cases covering oneM2M
requirements specified by oneM2M TS0001 [1] and oneM2M TS-0004 [2].

e oneM2M System Adaptor : this is the platform dependent part that
includes adaptors and codecs (out of the scope of the present document).
This part of the architecture definition depends on the specific platform
(e.g. Windows or Linux) and test tool on which the tester is going to run.

Figure 5.3-2 shows the oneM2M TTCN-3 test architecture design used for the
oneM2M ATS. The Test Suite needs to interact with the System Adaptor to
implement the collection of TTCN-3 test cases that are intended to be used to

test the oneM2M IUTs.

The oneM2M TTCN-3 test cases implement the test algorithms specified in the
TSS&TP document oneM2M TS0018 [7], including verdict logic that allows
pass/fail diagnosis.

The test algorithms use the interfaces defined in [1] and [2] (mca, mce) in order
to:

1. control the test event to be sent towards the IUT; and
2. observe the test events received from the IUT.

In TTCN-3 these two interfaces have been implemented through a set of logical
TTCN-3 ports (mcaPort and mcaPortIn for mca interface, and mccPort and

mccPortIn for mec interface) which allows oneM2M message primitives exchange
with the TUT.

Test Suite

oneM2M TTCN-3 ATS /

mecPortinternal [7]

ScefSimu infoPort CseSimu Lz o AeSimu

Tester Tester Tester
- 3|3 3 3 3
gxz|gf 3|3 218|213 58 slg| 2| B
a0 92 3T v |®|el|l @ 3|® | © v bl
= si9(|¢| &l oloe| Plel ol ol o pl ©
o s A3 §lz °olalg 3 a3 33 2] 2
S5 - = = = = = 2| =
w - =5 =1 =] =1

|I T

1 CODECS ScefSystem | | CseSystem |: | AeSystem

1 1

oneM2M System Adaptor ‘
I
I

External Upper tester oneM2M lower layers stack

functions transport
Platfor(r:i-\a)daptor System adaptor (SA) \

SUT SUT
Test Platform
lTrCN-3 ports TTCN-3 external functions

Figure 3: Figure 5.3-2: oneM2M Test Architecture

The oneM2M primitive messages have been mapped into TTCN-3 structure.
Through this mapping, the TTCN-3 is able to build and send these messages, as
well as receive them via the ports defined above.

Additionally, the test cases are able to control and configure the test platform
through a dedicated port called acPort while port utPort enables oneM2M

TTCN-3 Test Component module to trigger specific action or behaviour on IUT.
TTCN3 Test Components can also exchange information through a dedicated
port called infoPort.

To build up a tester, the test platform needs to be also developed (out of scope).
This test platform is composed of three adaptation layers:

o PA (Platform Adaptor) layer functionality implements the communication
between the TTCN-3 modules and external elements that constitute the
test tool such as timers and external functions. The External functions
are a powerful resources supported by TTCN-3 language. An External
function is a function declared at the TTCN-3 level but implemented at
the native level.

e SA (System Adaptor) layer functionality is divided into two modules:

— oneM2M lower layers stack module implements the communication
with the IUT and carries out the oneM2M primitives messages sent
to or received from the TUT. This module is based on TCP or UDP
depending on the binding supported by the IUT. The binding is a
system adaptor parameter.

— Upper Tester Transport module implements functions that enable
triggering specific actions or behaviour on the TUT.

e CODECS layer is the part of the tester to encode and decode messages
between the TTCN-3 abstract internal data representation and the format
required by the related base standard which the IUT understands. Several
CODECS are required in oneM2M tester to cope with the bindings consid-
ered in oneM2M (HTTP, CoAP, MQTT) and the serialization methods
(xml, json).

5.4 Ports and ASPs (Abstract Services Primitives)
5.4.0 Introduction

The oneM2M ATS implements the following ports:

e The mcaPort and mcaPortIn
e The mccPort and mccPortIn
e The acPort

e The utPort

e The InfoPort

5.4.1 mcaPort, mcaPortIn, mccPort, mccPortIn
These ports are used to send and receive the following message sets:

o Request Primitives messages in accordance with oneM2M TS-0004 [2].
o Response Primitives messages in accordance with oneM2M TS-0004 [2].

10

Two primitives are currently defined for these ports indicated as table 5.4.1-1:

1. The M2MRequestPrimitive - to send or receive oneM2M messages to/from
the IUT. Depending on the IUT to be tested:

1. If the IUT is an AE, these messages are either received or sent by the
tester which is associated with the CSE role through the mcaPortIn
or the mcaPort respectively.

2. If the IUT is a CSE, these messages are either sent or received by
the tester when it plays the AE role through the mcaPort or the
mcaPortIn respectively, or sent or received by the tester when it plays
the CSE role through the mccPort or the mecPortIn respectively.

2. The M2MResponsePrimitive - to send or receive oneM2M messages to/from
the IUT. Depending on the IUT to be tested:

1. If the IUT is an AE, these messages are either sent or received by the
tester which is associated with the CSE role through the mcaPortIn
or the mcaPort respectively.

2. If the IUT is a CSE, these messages are either sent or received by
the tester when it plays the CSE role through the mccPortIn or the
mccPort respectively, sent or received by the tester when it plays the
AE role through the mcaPortIn or mcaPort respectively.

Both primitives contain another parameters that permits to dynamically configure
the test adaptor for every single sending. These parameters are:

e Host: IP address of the IUT

¢ XML Namespace

¢ Protocol binding

e Serialization

o ForceFields: used to force invalid or empty values to certain attributes.
This behaviour shall be implemented by the System Adaptor.

Table 2: Table 5.4.1-1: Mapping of TTCN-3 Primitives to oneM2M
Service Primitives

TTCN-3 Primitive oneM2M Message Direction IUT
M2MRequestPrimitive ~ Request Primitive <=> AE
M2MRequestPrimitive Request Primitive <=> CSE
M2MResponsePrimitive Response Primitive <=> AE
M2MResponsePrimitive Response Primitive <=> CSE

5.4.2 mcnPort, mcnPortIn
These ports are used to send and receive the following message sets:

o Request Primitives messages in accordance with oneM2M TS-0004 [2].
o Response Primitives messages in accordance with oneM2M TS-0004 [2].

Two primitives are currently defined for these ports indicated:

11

1. The T8Request - to send T8 request messages to/from the IUT according
to 3GPP TS 29.122 [8].

e The T8Response - to receive T8 response messages to/from the TUT
according to 3GPP TS 29.122 [8].

Further primitives might be defined to support other underlying networks.

5.4.3 mccPortInternal

This port is used to send and receive the following message sets between TTCN-3
components:

o Request Primitives messages in accordance with oneM2M TS-0004 [2].
o Response Primitives messages in accordance with oneM2M TS-0004 [2].

5.4.4 utPort

5.4.4.0 Introduction The utPort is included in the oneM2M ATS in order
to be able to stimulate the IUT and receive extra information from IUT upper
layers. For instance, the utPort can be applied to automate AE testing shown
as clause 5.4.4.1.

5.4.4.1 Usage for Automated AE Testing The utPort is in charge of the
communication between TTCN-3 Test Component module in Test System and
the Upper Tester Application in SUT.

Functionalities that TTCN-3 Test Component module and the Upper Tester
Application are required to implement are listed as follows:

e TTCN-3 Test Component is able to configure the Test System and send
standardized triggering commands to the SUT (Upper Tester Application).

e Upper Tester Application can process the triggering command messages
received from Test System (TTCN-3 Test Component) and stimulates
IUT to act following the corresponding triggering command (i.e. sending
oneM2M service primitives to Test System through Mca port).

oneM2M service Primitive defined for utPort is listed as follows:

e The UtTrigger primitive is used to trigger upper layer events in IUT
(i.e. sending oneM2M service primitives to Test System through Mca port).

e The UtTriggerAck primitive is used by IUT to send acknowledgement back
to the Test System.

The Upper Tester Application in SUT can be implemented as an embedded source
code. An example for implementation of automated AE test for Registration is
shown as figure 5.4.4.1-1.

5.4.4.2 Upper Tester Control Primitives

12

C N 2
TEST SYSTEM SUT
Y
TTCN-3 Test Component Ut Upper Tester Application
\ a8 . . .
Trigger Registration |- e \\/’} ‘ Stimulate Registration ‘
’ Stimulate Container Create ‘
Function call
S
CSE Mea IUT (AE)
/\\ . .
C mcaPort mcaPort |/ Registration
’ Container Create
J
\ J N J

Figure 4: Figure 5.4.4.1-1: Example of automated AE test using Ut interface

5.4.4.2.1 Introduction The upper tester triggering message is used to trans-
port control commands between Test System and the Upper Tester Application.
The control command will contain essential parameters that are required for
certain test case.

The upper tester triggering message type maps to particular message formats for
exchanging data and those message formats are defined by TTCN-3 primitive as
shown at table 5.4.4.2.1-1, U tTrigger and U tTriggerAck primitive.

Table 3: Table 5.4.4.2.1-1: Mapping of TTCN-3 Primitives to
oneM2M Service Primitives

Upper Tester
Control Message TTCN-3

Type Primitives Direction Direction

Trigger UtTrigger TS uT
Primitive

Trigger Acknowl- UtTriggerAck uT TS

edgement Primitive

5.4.4.2.2 UtTrigger and UtTriggerAck Primitives The UtTrigger primi-
tive is initialized by the Test System to send triggering message to the target
IUT as depicted in figure 5.4.4.2.2-1. The IUT will send acknowledgement
message back to the Test System using UtTriggerAck primitive if trigger message
is successfully transported to the IUT. Then IUT starts interaction with Test
System through oneM2M request and response primitives.

Figure 5: Figure 5.4.4.2.2-1: Trigger message flow

Table 5.4.4.2.2-1 defines UtTrigger and UtTriggerAck primitives including

Table 4: Table 5.4.4.2.2-1: UtTrigger and UtTriggerAck Primitive

Mapping
to
Ut Control oneM2M Triggering HTTP
Primitive data types Description Reference Message message
UtTrigger requestPrimitidNLY oneM2M EXAMPLE EXAMPLE
Primitive essential TS-0004 1: 1:
parame- 2] If the test If the test
ters objective objective
included is to test is to test
for certain kK “Test kK “Test
test case System System
trig- trig-
See note 1 gers_ ** gers_ **

IUT to IUT to
execute a execute a
test case test case
for for
creation creation
of < AE of < AE
> with > with

labels labels
attribute attribute
under a under a
CSEBase CSEBase
re- re-
source”, source”,

then the then the
triggering triggering

message message
would be would be
serialized serialized
as as

following. following.

14

Mapping

to
Ut Control oneM2M Triggering HTTP
Primitive data types Description Reference Message message
UtTrigger requestPrimitieNLY oneM2M Request Request
Primitive essential T'S-0004 { POST
parame- [2] “m2m:rqp” /{SUT_UT_APPLICATION_URL}
ters { HTTP/1.1
included “op”: 1, Host :
for certain //indicate {SUT_IP_ADDRESS:PORT}
test case CREATE Content-
operation Length :
See note 1 “ty”: 2, {PAY-
//indicate ~LOAD_LENGTH}
AE Content-
resource Type :
type applica-
“to”: tion/
{TEST_SYSTEdh ADDRESS},
“pe”: {
“m2m:ae”: {
“m2m:rqp”
“Ibl”:“UNINITIALIZED”
//indicate “op”: 1,
that //indicate
attribute CREATE
labels operation
needs to “ty”: 2,
be //indicate
included AE
1 resource
type
“rvi”: “2a” “to”:
} {TEST_SYSTEM__ADDRESS},
} “pe” {
“m2m:ae”:
“Ibl”:“UNINITIALIZED”
//indicate
that
attribute
labels
needs to
be
included
}
15 “rvi”: “2a”

}
}

Mapping
to

Ut Control oneM2M Triggering HTTP
Primitive data types Description Reference Message message
UtTrigger requestPrimitieNLY oneM2M EXAMPLE EXAMPLE
Primitive essential TS-0004 2: 2:
parame- 2] If the test If the test
ters objective objective
included is to test is to test
for certain “Test “Test
test case System System
triggers triggers
See note 1 IUT to IUT to
execulte a execute a
test case test case
for delete for delete
of a < of a <
AE > re- AFE > re-
source.”, source.”,
then the then the
triggering triggering
message message
would be would be
serialized serialized
as as
following. following.

16

Mapping

to
Ut Control oneM2M Triggering HTTP
Primitive data types Description Reference Message message
UtTrigger requestPrimitieNLY oneM2M Request Request
Primitive essential T'S-0004 { POST
parame- [2] “m2m:rqp” /{SUT_UT_APPLICATION_URL}
ters { HTTP/1.1
included “op”: 4, Host :
for certain //indicate {SUT_IP_ADDRESS:PORT}
test case DELETE Content-
operation Length :
See note 1 “to”: {PAY-
{TAR- LOAD LENGTH}
GET_AE_RIG&Ii&E ADDRESS},
//indicate Type :
Target AE applica-
resource tion/
address json
“rvi”: “2a”
} {
} “m2m:rqp”
{
“op”: 4,
//indicate
DELETE
operation
“to”:
{TAR-
GET_AE_RESOURCE_ADDRESS},
//indicate
Target AE
resource
address
“rvi”: “23177
}
}

17

Mapping
to

Ut Control oneM2M Triggering HTTP
Primitive data types Description Reference Message message
Ut TriggerPrinNjide Special N/A “RESET” Request
upper POST
tester /{SUT_UT__APPLICATION_URL}
commands HTTP/1.1
Host :

18

{SUT_IP_ADDRESS:PORT}
X-M2M-

UTCMD:

Reset\

Mapping

to
Ut Control oneM2M Triggering HTTP
Primitive data types Description Reference Message message
UtTrigger responsePrimdODNLY oneM2M Response Response
Ack responseS- T'S-0004 { HTTP/1.1
Primitive tatusCode [2] “m2m:rsp”: 200 OK
attribute X-M2M-
included “rsc”: 2000 RSC: 2000
}
See note 2

19

}

For any
triggering
response,
it only
contains a
response
status
code, and
the
response
status
code for
the
triggering
operation
can only
be set to
either 2000
(OK) or
4000
(BAD_REQUEST)
according
to the
rules for
triggering
operations.

Mapping
to

Ut Control oneM2M Triggering HTTP
Primitive data types Description Reference Message message
NOTE 1: NOTE 1: NOTE 1: NOTE 1: NOTE 1: NOTE 1:
Additional Additional Additional Additional Additional Additional
rules rules rules rules rules rules
defined in defined in defined in defined in defined in defined in
table table table table table table
5.4.4.2.2-3 5.4.4.2.2-3 5.4.4.2.2-3 54.4.22-3 544223 54.4.22-3
are also are also are also are also are also are also
applied. applied. applied. applied. applied. applied.
NOTE 2: NOTE 2: NOTE 2: NOTE 2: NOTE 2: NOTE 2:
Attribute Attribute Attribute Attribute Attribute Attribute
response response response response response response
status status status status status status
code is code is code is code is code is code is
defined at defined at defined at defined at defined at defined at
table table table table table table
5.4.4.2.2-3. 5.4.4.2.2-3. 5.4.4.2.2-3. 5.4.4.2.2-3. 5.4.4.2.2-3. 5.4.4.2.2-3.

Table 5: Table 5.4.4.2.2-2: Definition of special Upper Tester com-
mands

The rules for defining UtTrigger and UtTriggerAck primitives are:

Value

Interpretation

Reset

Inidicates that the IUT should reset

1. UtTrigger primitive is represented in requestPrimitive serialized in JSON
format.

2. UtTrigger primitive shall be interpreted as follows:

o Any attribute/parameter containing a value shall be present and equal
in the triggered request primitive.
o Any attribute/parameter containing “UNINITTALIZED” value shall
be present in the triggered request primitive.
o Any other attribute/parameter shall comply with oneM2M TS-0004

[2].

3. Parameters within UtTrigger are listed as following:

o operation: (mandatory) operation type that ITUT is triggered to

perform.

20

 resourceType: (optional) resource type of a target resource against
which TUT is triggered to perform certain operation

e to: (mandatory) target resource against which TUT is triggered to
perform certain operation.

o primitiveContent: (optional) represents the resource attributes that

shall be included in the requestPrimitive.

Table 6: Table 5.4.4.2.2-3: Definition of ResponseStatusCode for
UtTriggerAck primitive

Response Status Code

Response Status Code

Description Value Interpretation

OK 2000 The SUT receives
successfully the
triggering message from
Test System

BAD_REQUEST 4000 The SUT does not

NOTE: Only above two
response status codes
are allowed to use in

UtTriggerAck primitive.

NOTE: Only above two
response status codes
are allowed to use in

UtTriggerAck primitive.

interpret correctly the
UtTrigger primitive
NOTE: Only above two
response status codes
are allowed to use in
UtTriggerAck primitive.

5.4.4.2.3 Control Communication Protocol

Protocol used for proceeding

communications between Test System and Upper Tester Application is designated
to the Hypertext Transfer Protocol (HTTP) protocol owning it is an application
protocol that is widely supported by most all IoT devices and various intrinsic
features such as persistent connection, ease of programming, flexibility, etc.

5.4.4.2.4 Control Message Serialization Control commands that are
wrapped within a request body of HTTP message shall be serialized into
JavaScript Object Notation (JSON) because it is very lightweight and easy
to parse and generate for machines.

5.4.5 acPort
The acPort is included in the oneM2M ATS in order to be able to control and
configure the test adaptor for specific cases.

5.4.6 infoPort

The infoPort is included in the oneM2M ATS in order for the TTCN-3 test
components to be able to exchange information such as last response primitives
or request primitives received by a component, retrieved primitive contents.

21

5.5 Test components

5.5.1 Tester

The Tester test component includes a set of ports, timers and variables that are
common to the other defined components which are described in table 5.5.1-1.

Table 7: Table 5.5.1-1: Tester component elements

Name

Instance type

Element type

Description

acPort

infoPort

utPort

tc_ac

tc_ wait

tc__done

vc__config

port

port

port

timer

timer

Timer

variable

vc__testSystemRole variable

AdapterControlPort Port that

InfoPort

UpperTesterPort

N/A

N/A

N/A

Configurations

TestSystemRole

22

communicates
with the adapter
for sending
configuration
parameters

Port between test
components for
exchanging
information

Port that
communicates
with the UT
Application for
triggering actions
on the IUT
Timer for the
reception of a
message

Timer for the
reaction of the
IUT to an upper
tester primitive
Timer for waiting
completion of a
component
behaviour
Configuration
being used for the
given test case
Role of the test
component

Name Instance type

Element type

Description

vc__componentRegisteaeibble

vc_resetRequired variable

vc_resourcesList variable

ve_resourcesIndexToBelddibted

ve__acplndex variable
vc__request variable
VvC__response variable
ve__aeSimu variable
ve_cseSimu variable

boolean

Boolean

MyResourcesList

IntegerList

integer

MsglIn

Msgln

default

default

vc_ primitiveContentRatiribledResource PrimitiveContent

Flag to indicate
when a
component has
registered to the
T

Flag to indicate
whether a reset of
the IUT is
necessary

List of all
resources created
by the test
system on the
T

List of indexes of
resources created
by the test
system on the
IUT that need to
be deleted

Index of access-
ControlPolicy
resource used by
the test system
by default (when
required)

Latest request
primitive
received /sent
Latest response
primitive
received/sent
Reference to the
default behaviour
for an AeSimu
component
Reference to the
default behaviour
for an CseSimu
component
Latest content of
a RETRIEVE
operation

Name Instance type Element type

Description

vce__mylInterfaces variable Interfaces

Parameters for
the ports of the
given component:
Port (mcaPort,
mcaPortIn,
mccPort,
mccPortIn)

Host (SUT IP
address :port)
Protocol binding
Serialization

Note that vc__aeSimu and vc__cseSimu are not common to the other defined
test components, but those variables are required in Tester for the correct

activation/deactivation of default behaviours.

5.5.2 AeSimu

The AeSimu test component extends the Tester component by adding elements
specific to an AE entity. Table 5.5.2-1 summarizes those elements.

Table 8: Table 5.5.2-1: AeSimu component elements

Name Instance type Element type

Description

mcaPort port OneM2MPort

mcaPortIn port OneM2MPort

ve_ae2 test component AeSimu

24

Port that
implements the
mca interface
when test system
is the client
(sending requests)
Port that
implements the
mca interface
when test system
is the server
(receiving
requests)
Reference to the
AE2 component
when required

Name Instance type Element type Description

ve__csel test component CseSimu Reference to the
CSE1 component
when CFO02 is
used
vc_ael test component AeSimu Reference to the
AE1 component
when required
ve_das test component AeSimu Reference to the
DAS component
when required
vc__aeSimuDesc variable AeSimuComponentDékemponent
configuration
extracted from
required (AE1 or
AE2) tester pixit
vc__dasSimuDesc variable AeSimuComponentDékemponent
configuration
extracted from
DAS tester pixit
ve_auxiliaryAe2Up variable boolean Flag to indicate
that AE2
component has
been started
ve__aelndex variable integer Index of the AE
resource in
vc_resourcesList
created by
AeSimu
component

5.5.3 CseSimu

The CseSimu test component extends the Tester component by adding elements
specific to an CSE entity. Table 5.5.3-1 summarizes those elements.

25

Table 9: Table 5.5.3-1: CseSimu component elements

Name

Instance type

Element type

Description

mcaPort

mcaPortIn

mccPort

mccPortIn

mccPortInternal

ve__ael

vc_ cse2

port

port

port

port

port

test component

test component

26

OneM2MPort

OneM2MPort

OneM2MPort

OneM2MPort

Port that
implements the
mca interface
when test system
is the client
(sending requests)
Port that
implements the
mca interface
when test system
is the server
(receiving
requests)

Port that
implements the
mcc interface
when test system
is the client
(sending requests)
Port that
implements the
mcc interface
when test system
is the server
(receiving
requests)

OneM2MPortInternaPort that

AeSimu

CseSimu

implements the
mcc and mcc’
interfaces
between TTCN-3
components
Reference to the
AE1 component
when CF02
(CseSimu as
master) is used
Reference to the
CSE1 component
when required

Name Instance type

Element type

Description

ve__cseSimuDesc variable

ve_localResourcesListariable

ve_local CSEBaseAnnaliadele

ve_localRemoteCselnderable

ve__remoteCselndex variable

ve_cSEBaselndex variable

ve__cseType variable

ve__auxiliaryCse2Up variable

CseSimuComponent[Qgsmponent

MyResourcesList

integer

integer

integer

integer

CseTypelD

boolean

configuration
extracted from
required (CSE1
or CSE2) tester
pixit

List of all
resources created
by the IUT on
the test system
Index of the
CSEBaseAnnc
resource
corresponding to
the TUT

Index of the
remoteCSE
resource in
ve__localResourcesList
representing the
IUT (CSE)
Index of the
remoteCSE
resource in
vc_resourcesList
representing the
CseSimu
component
Index of the
CSEBase
resource in
vc_localResourcesList
of the CseSimu
component

CSE type of the
test system
(default is MN)
Flag to indicate
that CSE2
component has
been started

27

5.5.4 ScefSimu

The ScefSimu test component extends the Tester component by adding elements
specific to an SCEF entity. Table 5.5.4-1 summarizes those elements.

Table 10: Table 5.5.4-1: ScefSimu component elements

Name

Instance type

Element type

Description

mcnPort

mcnPortIn

ve ael

vc_cse2

ve__aeSimuDesc

ve cseSimuDesc

ve__cseType

ve_scefSimuDesc

port

port

test component

test component

variable

variable

variable

variable

28

OneM2MPort

OneM2MPort

AeSimu

CseSimu

Port that
implements the
mcn interface
when test system
is the client
(sending requests)
Port that
implements the
mcn interface
when test system
is the server
(receiving
requests)
Reference to the
AFE1 component
when required
Reference to the
CSE1 component
when required

AeSimuComponentDésxemponent

configuration
extracted from
required (AE1)
tester pixit

CseSimuComponentIiésmponent

CseTypelD

configuration
extracted from
required (CSE1)
tester pixit

CSE type of the
test system
(default is MN)

ScefSimuComponentDesnponent

configuration
extracted from
required (SCEF)
tester pixit

Name Instance type Element type Description

vc__configurations variable NiddConfigurations NIDD
configurations of
SCEF component

5.6 Test strategy

This clause introduces the test strategy being used for the TTCN-3 test cases.
The chosen strategy permits to have a clear structure of the code that facilitates
an easy navigation throw the different test steps.

The use of the TTCN-3 MTC and PTC(s) is as depicted in figure 5.6-1.

g ™
TTCHN-3 Test Case

MTC

Master PTC
[Slave PTC(s)

p. Iy

Figure 6: Figure 5.6-1: Use of TTCN-3 components

At the start of the test case execution, the MTC is created. Then, the MTC
executes the following steps:

e Step 1) initialization of the master PTC.

e Step 2) initialization of some parameters if required for the permutation
test cases.

e Step 3) running of the appropriate function on the master PTC. The
function run on the master PTC implements a given Test Purpose. Such
function follows a code structure as indicated here below:

— Local Variables, declaration of local variables.

— Test Control, checking TUT capability parameters required for the
proper execution of the test.

— Test Component Configuration, that initializes the given test compo-
nent and other test components acting as slave PTC(s) as required
by a given configuration.

— Test adapter configuration, that configures the test adapter throw the
acPort if required.

— Preamble, that implements the necessary test steps as described in the
Initial conditions of a Test Purpose. It may also implement additional
test steps which are required for the correct execution of the test.

29

— Test body, that implements the test steps as described in the Expected
behaviour of a Test Purpose.

— Postamble, that implements the necessary test steps to bring the IUT
back to the initial state.

— Tear down, that finalizes properly the TTCN-3 ports used by the
different test components depending on the configuration.

While master PTC follows the test structure described above, slave PTC(s) run
only certain procedures, usually one by one, as mandated by the master PTC.

A procedure usually implements a oneM2M request-response exchange between
a given PTC and the IUT, although it can implement any other specific action
(sending or reception of a message, several request-response exchanges, etc.).

e Step 4) checking of some parameters if required for the permutation test
cases.

This test strategy may slightly vary for certain cases where specific requirements
need to be fulfilled.

6 Untestable Test Purposes

Void.

7 ATS Conventions

7.0 Introduction

The ATS conventions are intended to give a better understanding of the ATS
but they also describe the conventions made for the development of the ATS.
These conventions shall be considered during any later maintenance or further
development of the ATS.

The ATS conventions contain two clauses, the naming conventions and the
implementation conventions. The naming conventions describe the structure of
the naming of all ATS elements. The implementation conventions describe the
functional structure of the ATS.

To define the ATS, the guidelines of oneM2M TS-0015 [i.2] were considered.

7.1 Testing conventions
7.1.1 Testing states

7.1.1.1 Initial state All test cases start with the function f preamble XYZ.
This function brings the IUT in an “initialized” state by performing some actions
such as registration of AE, creation of auxiliary access control policy resource,
creation of additional needed resources.

30

7.1.1.2 Final state All test cases end with the function f postamble_XYZ.
This function brings the IUT back in an “idle” state which means deletion of all
created resources being used by the test case so that next test case execution is
not disturbed.

As necessary, further actions may be included in the f postamble functions.

7.2 Naming conventions
7.2.1 General guidelines

This test suite follows the naming convention guidelines provided in oneM2M
TS-0015 [i.2].

The naming convention is based on the following underlying principles:

e in most cases, identifiers should be prefixed with a short alphabetic string
(specified in table 7.2.1-1) indicating the type of TTCN3 element it repre-
sents;

o suffixes should not be used except in those specific cases identified in table
7.2.1-1;

o prefixes and suffixes should be separated from the body of the identifier
with an underscore (“_");

EXAMPLE 1: c_sixteen, t_wait.

¢ only module names, data type names and module parameters should begin
with an uppercase letter. All other names (i.e. the part of the identifier
following the prefix) should begin with a lowercase letter;

o the start of second and subsequent words in an identifier should be indicated
by capitalizing the first character. Underscores should not be used for this
purpose.

EXAMPLE 2: f_initialState.

Table 7.2.1-1 specifies the naming guidelines for each element of the TTCN3
language indicating the recommended prefix, suffixes (if any) and capitalization.

Table 11: Table 7.2.1-1: TTCN-3 generic naming conventions

Naming Example
Language element convention Prefix identifier
Module Use upper-case none OneM2M_ Templates
initial letter
Group within a Use lower-case none messageGroup
module initial letter
Data type Use upper-case none SetupContents

initial letter

31

Naming Example
Language element convention Prefix identifier
Message template Use lower-case m__ m_ setuplnit
initial letter
Message template Use lower-case mw__ mw__anyUserReply
with wildcard or initial letters
matching
expression
Signature Use lower-case S_ s_ callSignature
template initial letter
Port instance Use lower-case none signallingPort
initial letter
Test component Use lower-case none userTerminal
instance initial letter
Constant Use lower-case c__ c¢_maxRetransmission
initial letter
Constant (defined Use lower-case cc cc_ minDuration
within component initial letter
type)
External constant Use lower-case cxX_ cx__macld
initial letter
Function Use lower-case f f authentication()
initial letter
External function Use lower-case fx fx_ calculateLength()
initial letter
Altstep Use lower-case a_ a_ receiveSetup()
(incl. Default) initial letter
Test case Use ETSI TC TC COR 0009 47 ND
numbering
Variable (local) Use lower-case v v_macld
initial letter
Variable (defined Use lower-case ve vc__systemName
within a initial letters
component type)
Timer (local) Use lower-case t t_ wait
initial letter
Timer (defined Use lower-case tc tc__authMin
within a initial letters
component)
Module Use all upper PICS__ PICS__DOOROPEN
parameters for case letters
PICS
Module Use all upper PX PX TESTER_ STATION ID

parameters for
other parameters

case letters

32

Naming Example
Language element convention Prefix identifier
Formal Use lower-case p_ p_macld
Parameters initial letter
Enumerated Use lower-case e e_syncOk
Values initial letter

7.2.2 oneM2M specific TTCN-3 naming conventions

Next to such general naming conventions, table 7.2.2-1 shows specific naming
conventions that apply to the oneM2M TTCN-3 ATS.

Table 12: Table 7.2.2-1: oneM2M specific TTCN-3 naming conven-

tions
Naming Example
Language element convention Prefix identifier
oneM2M Module Use upper-case OneM2M__ OneM2M_ Testcases__

Module
containing
oneM2M types
Module
containing types
and values
Module
containing
Templates
Module
containing test
cases

Module
containing
functions
Module
containing
external functions
Module
containing
components,
ports and
message
definitions

initial letter
Use upper-case
initial letter

Use upper-case
initial letter

Use upper-case
initial letter

Use upper-case
initial letter

Use upper-case
initial letter

Use upper-case
initial letter

Use upper-case
initial letter

33

OneM2M_ Types

OneM2M_ Types

OneM2M_ TypesAndYadéhd@M_ TypesAndValues

OneM2M __TemplateOneM2M_Templates

OneM2M _Testcases OneM2M _Testcases

OneM2M_ FunctionsOneM2M Functions

OneM2M ExternalFOmefidé2¥] ExternalFunctions

OneM2M_ TestSystedneM2M_ TestSystem

Naming Example

Language element convention Prefix identifier
Module Use upper-case OneM2M_ Pixits OneM2M_ Pixits
containing initial letter

module

parameters

7.2.3 Usage of Log statements
All TTCN-3 log statements use the following format using the same order:

e The TTCN-3 test case or function identifier in which the log statement is
defined.

e One of the categories of log: INFO, WARNING, ERROR, TIMEOUT,
NONE.

o Free text.

EXAMPLE 1: *xlog** ("f_utInitializeIut: INFO: IUT initialized");
Furthermore, the following rules are applied too:

e All TTCN-3 setverdict statements are combined (as defined in TTCN-3
- ETSI ES 201 873-1 [6]) with a log statement following the same above
rules (see example 2).

EXAMPLE 2: *xsetverdict** (x*xpass**x , "TC_ONEM2M_CSE_DMR_CRE_001:
Received correct message");

7.2.4 Test Case (TC) identifier

Table 13: Table 7.2.4-1: TC naming convention

Identifier: TC_<root>_<gr> <sgr>_ <nn>_ <per>

<root> = root ONEM2M oneM2M

<gr> = group CSE CSE testing
AE AE testing

<sgr> = subgroup REG Registration
DMR Data Management and Repositor;
SUB Subscription and Notification
GMG Group Management
DIS Discovery
LOC Location
DMG Device Management
CMDH Communication Management and
SEC Security

<nn> = sequential number 001 to 999

34

Identifier: TC_<root>_ <gr> <sgr> <nn>_ <per>

<per> = permutation P1_P2_..PN Permutation parameters

EXAMPLE: TP identifier: TP/oneM2M/CSE/DMR/CRE/001
TC identifier: TC_ONEM2M_CSE_DMR_CRE_001.
7.3 IXIT

The following parameters are used by the oneM2M ATS for the correct execution
of the test cases.

Table 14: Table 7.3-1: oneM2M ATS IXITs

DEFAULT

GROUP IXIT NAME DESCRIPTION VALUE
TutParameters PX IN CSE MN-CSE True
TutParameters PX_ MN_ CSE IN-CSE False
TutParameters PX ASN CSE ASN-CSE False
TutParameters PX_SUT ADDRESSUT address “127.0.0.1:8080”
TutParameters PX_UT_IMPLEMENHIeD Tester False

implemented
TutParameters PX CSE _NAME IUT CSE Name “cseName”
TutParameters PX CSE_ID IUT CSE-ID with ~ “/cseld”

SP-relative-CSE-

ID format

(relative)

according to

oneM2M TS-0001

[1], table 7.2-1
TutParameters PX_ CSE_RESOURUEFI IISE “cseResourceld”

resource ID with
Unstructured-
CSE-relative-
Resource-1D
(relative) format
according to
oneM2M
TS-0001 [1], table
7.2-1

GROUP

IXIT NAME DESCRIPTION

DEFAULT
VALUE

TutParameters

TutParameters

TutParameters

TutParameters

TutParameters

TutParameters

TutParameters

TutParameters
TutParameters

TutParameters
TutParameters

PX_SP_ID IUT M2M-SP-1D
with M2M-SP-1D
format (absolute)
according to
oneM2M T'S-0001
[1], table 7.2-1
Unstructured-
CSE-relative
-Resource-1D
PX_SUPER_AE_TIIAE-ID with
privileges to
CREATE at the
IUT CSEBase
with AE-ID-Stem
format (relative)
according to
oneM2M T'S-0001
[1], table 7.2-1
PX_SUPER_ CSE_IISE-ID with
privileges to
CREATE at the
IUT CSEBase
with SPrelative-
CSE-ID format
(relative)
according to
oneM2M T'S-0001
[1], table 7.2-1
PX_ ALLOWED_C_AE_IDS

PX NOT ALLOWED C AE IDS
PX ALLOWED S AE IDS
PX_NOT ALLOWED S AE IDS
PX NOT ALLOWED APP ID
PX__ADDRESSING _AMd‘edding)
method
PX_PRIMITIVE_S€6RHive scope

PX_WS_PROTOC®ebSocket
protocol

36

“//om2m.org”

“admin:admin”

“/admin:admin”

e
Allowed Aeld”}

iC-

NotAllowed Aeld”}

{ “ S_

AllowedAeld”}

s

NotAllowed Aeld”}
“NotAllowed Appld”
e_ hierarchical

e_cseRelative
“oneM2M.R2.0.xml”

DEFAULT

GROUP IXIT NAME DESCRIPTION VALUE
TutParameters PX_REQUEST_URWebSocket “r
context
TutParameters PX_HOSTING_ _CSHotling CSE-ID “CSE-ID”
for MQTT
TutParameters PX CREDENTIAL Cidential-ID for “admin:admin”
MQTT
IutParameters PX_ XML_NAMESBMIE Namespace “m2m="“http://www.onem2m.org/xml/protocols
IutParameters PX ACOR AccessControlOrigingttal” }
TutParameters PX_TCONFIG_IUTime to configure 10.0
IUT after a
requested action
TesterParameters PX TS AE1 AE1 component aeldStem = “¢
settings appld
="NMyApplld”
mcaPort and
mcaPortIn

settings which

include per port

the following info:

Binding:

- bindingProtocol

- bindingDesc:

- tsAddress

- localPort

- sutAddress

- remotePort

Serialization
TesterParameters PX TS AE2 AE2 component aeldStem = “¢

settings appld

="NMyApp2ld”

mcaPort and

mcaPortIn

settings which

include per port

the following info:

Binding:

- bindingProtocol

- bindingDesc:

- tsAddress

- localPort

- sutAddress

- remotePort

Serialization

37

DEFAULT
GROUP IXIT NAME DESCRIPTION VALUE

TesterParameters PX TS CSE1 CSE1 component cseName =
settings “CSE1_NAME”

cseld =
“/CSE1_ID”
cseResourceld =
“CSE1_RESOURCE_ ID”
spld =
“//onem2m.org”
supportedResourceType
= {int1, int2,
int3, int16}
mcaPort,
mcaPortIn,
mccPort and
mccPortIn
settings which
include per port
the following info:
Binding:
- bindingProtocol
- bindingDesc:
- tsAddress
- localPort
- sutAddress
- remotePort
Serialization

38

GROUP

IXIT NAME

DESCRIPTION

DEFAULT
VALUE

TesterParameters

PX TS CSE2

PX_TS_DAS

PX_TS_UT

39

CSE2 component
settings

DAS1 component
settings

UpperTester
settings

cseName =
“CSE2_NAME”
cseld =
“/CSE2_ID”
cseResourceld =
“CSE2_RESOURCE_ID”
spld =
“//onem2m.org”
supportedResourceType
= {int1, int2,
int3, int16}
mcaPort,
mcaPortIn,
mccPort and
mccPortIn
settings which
include per port
the following info:
Binding:

- bindingProtocol
- bindingDesc:

- tsAddress

- localPort

- sutAddress

- remotePort
Serialization
aeldStem = ““
appld ="
mcaPort and
mcaPortIn
settings which
include per port
the following info:
Binding:

- bindingProtocol
- bindingDesc:

- tsAddress

- localPort

- sutAddress

- remotePort
Serialization

url =

“http://127.0.0.1:43000/"

DEFAULT
GROUP IXIT NAME DESCRIPTION VALUE

ExecutionParameterX RESOURCES_[FOr 8 upildiTED{“MyAe”, “My-
purposes) AccessControlPol-
icyResource”,
“SubscriptionVeri-
ficationAcp”,
“MyAcp”,
“MyRemoteC-
SEResource”}
ExecutionParameterPX_RUN_ POSTAMB&FEdebugging true
purposes)
ExecutionParameterX_ CERTIFICATEcCHRASEHng “n
ExecutionParameterdX_ CERTIFICATEchNAMing “r
ExecutionParameter X PAIRWISEKE YPaliEd(@Method e establish
ExecutionParameterdX KEY PROVISIPXNvisioned e_ preProvisioning

8 TTCN-3 Verifications

The principles for Verifying the TTCN-3 test code are given in oneM2M TS-0015
[i.2].

All test cases provided with the present document in annex A which correspond
to at least one of the product profiles defined in oneM2M TS-0025 [i.3] have been
verified at the time of publication of the present document which corresponds
with the TTCN-3 code gitlab tag provided in annex A.

Annex A (normative): TTCN-3 library modules

A.1 Electronic annex, zip file with TTCN-3 code

This ATS has been produced using the Testing and Test Control Notation
(TTCN) according to ETSI ES 201 873-1 [6].

This test suite has been compiled error-free using two different commercial
TTCN-3 compilers.

The TTCN-3 library modules, which form parts of the present document, are
contained in the following gitLab tag:

https://git.onem2m.org/TST/ATS/- /tags/TS-0019-baseline-v4 1 1

40

https://git.onem2m.org/TST/ATS/-/tags/TS-0019-baseline-v4_1_1

Annex B (informative): Bibliography

ISO/IEC 9646-6 (1994): “Information technology - Open Systems Interconnection
- Conformance testing methodology and framework - Part 6: Protocol profile

test specification”.

oneM2M TS-0017: “Implementation Conformance Statement”.

oneM2M TS-0031: “Feature catalogue”.

History
Version Date Publication history
V4.0.0 2022-05-09 Base document from
TS-0019 v3.3.1
V4.1.0 2024-01-12 Integrated approved
contributions:
TDE-2023-0052-T'S-
0019-
Adaptation_from converted version R4
V4.1.1 2024-03-1 Editorial changes

41

	Contents
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.2 Abbreviations

	4 Conventions
	5 Abstract Test Method (ATM)
	5.1 Abstract protocol tester
	5.2 Test Configuration
	5.2.1 AE Test Configuration

	5.3 Test architecture
	5.4 Ports and ASPs (Abstract Services Primitives)
	5.4.0 Introduction
	5.4.1 mcaPort, mcaPortIn, mccPort, mccPortIn
	5.4.2 mcnPort, mcnPortIn
	5.4.3 mccPortInternal
	5.4.4 utPort
	5.4.5 acPort
	5.4.6 infoPort

	5.5 Test components
	5.5.1 Tester
	5.5.2 AeSimu
	5.5.3 CseSimu
	5.5.4 ScefSimu

	5.6 Test strategy

	6 Untestable Test Purposes
	7 ATS Conventions
	7.0 Introduction
	7.1 Testing conventions
	7.1.1 Testing states

	7.2 Naming conventions
	7.2.1 General guidelines
	7.2.2 oneM2M specific TTCN-3 naming conventions
	7.2.3 Usage of Log statements
	7.2.4 Test Case (TC) identifier

	7.3 IXIT

	8 TTCN-3 Verifications
	Annex A (normative): TTCN-3 library modules
	A.1 Electronic annex, zip file with TTCN-3 code

	Annex B (informative): Bibliography
	History

